Planarity and Edge Poset Dimension

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planarity and Edge Poset Dimension

Dif ferent areas of discrete mathematics lead to instrinsically dif ferent characterizations of planar graphs . Planarity is expressed in terms of topology , combinatorics , algebra or search trees . More recently , Schnyder’s work has related planarity to partial order theory . Acyclic orientations and associated edge partial orders lead to a new characterization of planar graphs , which also ...

متن کامل

Boxicity and Poset Dimension

Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). A k-dimensional box is a Cartesian product of closed intervals [a1, b1]× [a2, b2]× · · · × [ak, bk]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent...

متن کامل

Dimension-2 poset competition numbers and dimension-2 poset double competition numbers

LetD = (V (D), A(D)) be a digraph. The competition graph ofD, is the graphwith vertex set V (D) and edge set {uv ∈ ( V (D) 2 ) : ∃w ∈ V (D), uw, vw ∈ A(D)}. The double competition graph of D, is the graph with vertex set V (D) and edge set {uv ∈ ( V (D) 2 )

متن کامل

Poset edge-labellings and left modularity

It is known that a graded lattice of rank n is supersolvable if and only if it has an EL-labelling where the labels along any maximal chain are exactly the numbers 1, 2, . . . , n without repetition. These labellings are called Sn EL-labellings, and having such a labelling is also equivalent to possessing a maximal chain of left modular elements. In the case of an ungraded lattice, there is a n...

متن کامل

On an extremal problem for poset dimension

Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet on f(n) elements. What is the asymptotics of f(n)? It is easy to see that f(n) > n. We improve the best known upper bound and show f(n) = O(n). For higher dimensions, we show fd(n) = O ( n d d+1 ) , where fd(n) is the largest integer such that every poset on n elements has a d-dimensional subposet o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1996

ISSN: 0195-6698

DOI: 10.1006/eujc.1996.0064